

Communication

Hyperfine Coupling to the Bridging O in the Di-II-oxo Core of a Mn-Mn Model Significant to the Core Electronic Structure of the O-Evolving Complex in Photosystem II

Oleg M. Usov, Vladimir M. Grigoryants, Ranitendranath Tagore, Gary W. Brudvig, and Charles P. Scholes J. Am. Chem. Soc., 2007, 129 (39), 11886-11887• DOI: 10.1021/ja073179n • Publication Date (Web): 12 September 2007 Downloaded from http://pubs.acs.org on February 14, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 1 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 09/12/2007

Hyperfine Coupling to the Bridging ¹⁷O in the Di- μ -oxo Core of a Mn^{III}-Mn^{IV} Model Significant to the Core Electronic Structure of the O₂-Evolving Complex in Photosystem II

Oleg M. Usov,[‡] Vladimir M. Grigoryants,[‡] Ranitendranath Tagore,[†] Gary W. Brudvig,*,[‡] and Charles P. Scholes*,‡

Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, and Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107

Received May 4, 2007; E-mail: cps14@albany.edu; gary.brudvig@yale.edu

It is generally accepted that Mn in the S2 state of the oxygenevolving center (OEC) is in the +3 and +4 oxidation states with μ -oxo linkages. ^{1,2} X-ray crystallography has provided the resolution to model the OEC as a Mn₃CaO₄ cube connected to a fourth Mn via a *u*-oxo bridge.^{3,4} ⁵⁵Mn electron nuclear double resonance (ENDOR) is highly consistent with the cuboidal structure.^{5,6}

Di-u-oxo-bridged Mn^{III}-Mn^{IV} compounds are widely studied models for this S₂ state. 1,7,8 Such models present a manganese multiline EPR pattern from $S = 2 \text{ Mn}^{\text{III}}$ and $S = \frac{3}{2} \text{ Mn}^{\text{IV}}$, antiferrromagnetically coupled to each other to yield a net spin S $= \frac{1}{2}$. Electron spin echo envelope modulation (ESEEM) and ENDOR of such MnIII-MnIV models have resolved hyperfine couplings for Mn^{IV} and Mn^{III}, 9,10 protons, 9 and liganding nitrogen. 11 However, the ubiquitous μ -oxygens which physically couple the Mn^{III} and Mn^{IV} have yet to have their electronic structure and electron-spin density elucidated.

Recently Tagore et al.1 showed incorporation of isotopically enriched oxygen into the di-μ-oxo bridges of Mn^{III}—Mn^{IV} models, simply by slow exchange from trace water in dry CH₃CN. For our work the di- μ -oxo Mn^{III}-Mn^{IV} bipyridyl dimer [(bpy)₄Mn₂^{III/IV}(μ - O_{2} [(ClO₄)₃ (bpy = 2,2" bipyridine) was synthesized according to literature methods.^{1,12} A CH₃CN (HPLC grade, Fisher) solution 2.5 mM in Mn^{III}-Mn^{IV} bipyridyl dimer was prepared, and trace H₂O, either as H₂¹⁶O or as isotopically enriched H₂¹⁷O (84% atomic enrichment in ¹⁷O, Isotec.), was added at 1 μ L of water to 200 μ L of CH₃CN. The exchange time of the water oxygen into the μ -oxo cross bridges at room temperature is about 20 min. An equal volume of CH2Cl2 (Fisher, reagent grade) was added, and the sample precooled at -80 °C for several hours. The precooled 70 μL sample, in a 2.0 mm i.d., 2.4 mm o.d. quartz EPR tube, was glassed by plunging into liquid nitrogen. A glass inhibits paramagnetic species from aggregating upon freezing to prevent these aggregates from interfering with ENDOR. (CH3CN-DMF also provided an even better glass. However, the DMF contained reductants that produced Mn^{II} artifacts but did not hamper di-uoxo ¹⁷O hyperfine measurements (see Supporting Information).)

X-band EPR (9.525 GHz) was carried out at 15 K as previously described.¹³ CW Q-band (34.1 GHz) ENDOR was performed under dispersion (χ') and rapid passage field-modulated conditions at 2 K. 13 A nucleus, Z, with $I \ge 1$, namely, 17O ($I = \frac{5}{2}$) or 14N (I = 1), will have first-order ENDOR frequencies given as $^{\mathrm{Z}}\nu^{\pm}_{\mathrm{ENDOR}} = |^{\mathrm{Z}}A/2|$ $\pm Z\nu + 3ZP(2m-1)/2$, where $-I + 1 \le m \le I$, ZA, and ZP are hyperfine and quadrupole coupling constants and $^{\rm Z}\nu$ is the nuclear Zeeman frequency. ¹⁴ At 12200 G $^{17}\nu = 7.03$ MHz and $^{14}\nu = 3.76$ MHz. For the ¹⁷O features here, $|^{17}A/2| \approx ^{17}\nu$. The $^{17}\nu^-_{\rm ENDOR}$ branch is close to zero frequency and is not resolved because $|{}^{17}A/2|$ and

 $^{17}\nu$ cancel. The $^{17}\nu^{+}_{\rm ENDOR}$ branch occurs at a frequency of approximately $|{}^{17}A/2 + {}^{17}\nu|$ because as elsewhere, ${}^{17}O$ quadrupolar splittings contribute only to line broadening. 14,15 For 14N, the $^{14}\nu^{+}_{\rm ENDOR}$ branch, like the $^{17}\nu^{+}_{\rm ENDOR}$ branch, is the one observable by rapid passage CW Q-band ENDOR.13

The X-band EPR signal from the di- μ -oxo Mn^{III}—Mn^{IV} bipyridyl dimer (Figure 1A) was similar to that reported by Cooper et al. 12 The outer features 300-600 G above the center (at g = 1.99 and \sim 3400 G) of the multiline pattern showed the most well-resolved structure. There was significant broadening of this structure brought on by the H₂¹⁷O. In Figure 1B, we compare second-derivative X-band features, which show significant ¹⁷O-induced broadening.

A comparison (Figure 2) of ENDOR signals from the Mn^{III}-Mn^{IV} bipyridyl dimers, respectively, exchanged with H₂¹⁶O and with ${\rm H_2^{17}O}$, showed a new feature from the ${}^{17}{\rm O}$ sample near 13.5 \pm 1.0 MHz. This feature was best resolved ~300 to 600 G above and below the Q-band EPR line center (which occurs at g = 1.99 or 12240 G). The hyperfine coupling, derived from $^{17}\nu^{+}_{\rm ENDOR} = |^{17}A/2|$ $\pm \ ^{17}\nu$, was $|^{17}A| = 12.8 \pm 1.0$ MHz. A feature near 10.5 MHz occurred from all samples. We assign this as the liganding bipyridyl ¹⁴N nitrogen with an approximate hyperfine coupling of $|^{14}A| =$ 13.5 ± 0.3 MHz; corresponding | ^{14}A | couplings of the Mn^{III}-Mn^{IV} CYCLAM and TMPA complexes were, respectively, 9.2 and 11.2 MHz.11

Correlating EPR Line Broadening with ¹⁷O Hyperfine **Coupling.** For *two* equivalent $I = \frac{5}{2}$ ¹⁷O-di- μ -oxo nuclei, an elevenline pattern is expected with peaks in the ratio of 1:2:3:4:5:6:5:4: 3:2:1 and a separation between peaks of $|^{17}A|$ (in Gauss). [Note that $2.79|^{17}A|$ (in Gauss) = $|^{17}A|$ (in MHz).] This packet shape is well approximated by a Gaussian function whose peak width between derivative extrema is 4.84•|17A| (in Gauss).16 To replicate EPR line broadening, we convoluted the narrower second-derivative spectrum of the ¹⁶O-di- μ -oxo Mn^{III}-Mn^{IV} bipyridyl dimer with a Gaussian broadening function and, in the Supporting Information, with an exact 1:2:3:4:5:6:5:4:3:2:1 distribution. The convolutionally broadened EPR spectra were compared (Figure 1B) with the broadened spectrum of the ¹⁷O-di-*u*-oxo Mn^{III}-Mn^{IV} bipyridyl dimer. Best agreement was obtained with a Gaussian broadening function having a 22 ± 3 G peak width between derivative extrema. This width corresponded to an intrinsic di- μ -oxo ¹⁷O coupling of $|^{17}A| = 4.6 \pm 0.6$ (in Gauss) = 12.9 ± 1.8 (in MHz). The coupling estimated from the EPR line width compares favorably with the hyperfine coupling of $|^{17}A| = 12.8 \pm 1.0$ MHz from ENDOR.

There has been little direct experimental hyperfine evidence on the oxygen hyperfine structure at μ -oxo cross bridges. There happens to be ENDOR hyperfine information from the bridging μ -oxygen between Fe(III) ($S = \frac{5}{2}$) and Fe(IV) (S = 2) in the di-Fe cluster of ribonucleotide reductase. 15 There the hyperfine

[‡] State University of New York, Albany. † Yale University.

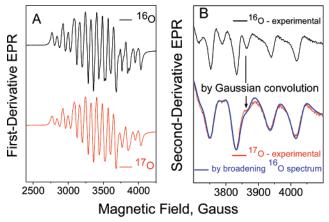


Figure 1. (Spectra A) First-derivative X-band EPR spectra of di-μ-oxo Mn^{III}-Mn^{IV} bipyridyl dimers exchanged with H₂¹⁶O (black) and H₂¹⁷O (red) in CH₃CN-CH₂Cl₂, recorded at T = 15 K, 6 G field modulation, 100 s signal averaging with a 2000 G field sweep, 2 mW microwave power, EPR frequency = 9.525 GHz. (Spectra B) Experimental second-derivative X-band EPR spectra of the same dimers exchanged with H₂¹⁶O (black) and H₂¹⁷O (red) and recorded in the 3700-4100 G range using 3 G field modulation; the blue overlay shows that the EPR spectrum from the di- μ -oxo- 17 O dimer can be obtained from the narrower line di- μ -oxo ¹⁶O dimer by convolution of that narrower spectrum with a Gaussian broadening function (of 22 G width between derivative extrema) using the Origin 7.0 data analysis program.

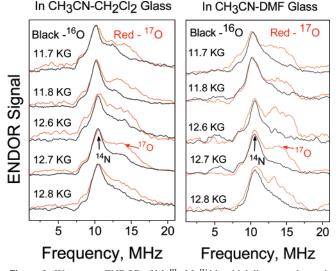


Figure 2. We present ENDOR of Mn^{III}-Mn^{IV} bipyridyl dimers exchanged with H₂¹⁶O (black) and H₂¹⁷O (red) in CH₃CN-CH₂Cl₂ and in CH₃CN-DMF glasses. The fields in the figure from top to bottom are approximately 500 and 600 G below g = 1.99 and approximately 300, 400, and 500 G above g = 1.99. ENDOR conditions: adiabatic rapid passage, T = 2 K, microwave power = $0.2 \mu W$, 100 kHz mod = 5 G ptp, time constant = 90ms, radio frequency power ≈ 20 W, radio frequency sweep rate = 2 MHz/ s, averaging time/spectrum = 1000 s, ν_{EPR} = 34.10 GHz.

coupling of \sim 23 MHz is nearly double that measured here for the $Mn^{III}\!-\!Mn^{IV}$ bipyridyl dimer. The di-Fe cluster couplings should be larger because Fe tends to be more covalent than Mn and because the $S = \frac{5}{2}$ ferric ion has a spin-containing $d(x^2 - y^2)$ orbital directed for σ bonding toward the oxygen 2s orbital. This σ bonding should lead to sizable ¹⁷O Fermi hyperfine coupling, whereas, the di-Mn system has no such spin-containing $d(x^2-y^2)$ orbital. Antiferromagnetic coupling between paramagnetic metals depends on covalent electron-spin transfer through bridging ligands. 17 DFT (density functional theory) computations on di-μ-oxo-Mn^{III}—Mn^{IV} systems indirectly utilize the μ -oxo covalent spin transfer to predict Mn^{III}— Mn^{IV} antiferromagnetic coupling. ^{18,19} The present work provides experimental underpinnings for testing future high level DFT calculations that give a comprehensive prediction of spin density, di-µ-oxo hyperfine coupling, and MnIII-MnIV antiferromagnetic coupling.

Acknowledgment. This research was supported by NIH Grant GM32715 (G.W.B.) and NIH Grant EB00326929 (C.P.S.).

Supporting Information Available: X-band EPR spectra are provided from the MnIII-MnIV bipyridyl dimer in CH3CN-DMF glassing solvent. A comparison is provided of line broadening simulations due to a Gaussian packet, a di-¹⁷O 1:2:3:4:5:6:5:4:3:2:1 packet, and a mono-17O 1:1:1:1:11 packet. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Tagore, R.; Chen, H.; Crabtree, R. H.; Brudvig, G. W. J. Am. Chem. Soc.
- 2006, 128, 9457. McEvoy, J. P.; Brudvig, G. W. Chem. Rev. 2006, 106, 4455. Loll, B.; Kern, J.; Saenger, W.; Zouni, A.; Biesiadka, J. Nature 2005,
- Ferreira, K. N.; Iverson, T. M.; Maghlaoui, K.; Barber, J.; Iwata, S. Science **2004**, 303, 1831.
- Peloquin, J. M.; Campbell, K. A.; Randall, D. W.; Evanchik, M. A.; Pecoraro, V. L.; Armstrong, W. H.; Britt, R. D. J. Am. Chem. Soc. 2000, 122, 10926.
- (6) Britt, R. D.; Peloquin, J. M.; Campbell, K. A. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 463.
- (7) Cooper, S. R.; Calvin, M. J. Am. Chem. Soc. 1977, 99, 6623.
- (8) Mukhopadhyay, S.; Mandal, S. K.; Bhaduri, S.; Armstrong, W. H. Chem. Rev. 2004, 104, 3981.
- (9) Randall, D. W.; Gelasco, A.; Caudle, M. T.; Pecoraro, V. L.; Britt, R. D. J. Am. Chem. Soc. 1997, 119, 4481.
- Randall, D. W.; Sturgeon, B. E.; Ball, J. A.; Lorigan, G. A.; Chan, M. K.; Klein, M. P.; Armstrong, W. H.; Britt, R. D. J. Am. Chem. Soc. 1995, 117, 11780.
- (11) Tan, X. L.; Gultneh, Y.; Sarneski, J. E.; Scholes, C. P. J. Am. Chem. Soc. 1991, 113, 7853.
- (12) Cooper, S. R.; Dismukes, G. C.; Klein, M. P.; Calvin, M. J. Am. Chem. Soc. 1978, 100, 7248
- (13) Usov, O. M.; Choi, P. S.-T.; Shapleigh, J. P.; Scholes, C. P. *J. Am. Chem. Soc.* **2005**, *127*, 9485.
- Werst, M. M.; Kennedy, M. C.; Beinert, H.; Hoffman, B. M. Biochemistry **1990**, 29, 10526.
- (15) Burdi, D.; Willems, J.-P.; Riggs-Gelasco, P.; Antholine, W. E.; Stubbe, J.; Hoffman, B. M. J. Am. Chem. Soc. 1998, 120, 12910.
- (16) If there are n equivalent nuclei with spin I and hyperfine coupling |A| (in Gauss), the root mean square width between derivative extrema in the causs), the foot mean square within between derivative external in the resultant approximate Gaussian lineshape would be $2A[n I(I + 1)/3]^{1/2} = 4.84 \cdot |^{1/7}A|$, when n = 2 and $I = \frac{5}{2}$. See: McElroy, J. D.; Feher, G.; Mauzerall, D. C. *Biochim. Biophys. Acta* **1972**, 267, 363.

 (17) Anderson, P. W. Exchange in Insulators: Superexchange, Direct Exchange, Depth Exchange, Direct Exchan
- and Double Exchange. In *Magnetism*; Rado, G. T., Suhl, H., Eds.; Academic Press: New York, 1963; Vol. I; pp 28–85.
- (18) Sproviero, E. M.; Gascon, J. A.; McEvoy, J. P.; Brudvig, G. W.; Batista, V. S. *J. Inorg. Biochem.* **2006**, *100*, 786. (19) Zhao, X. G.; Richardson, W. H.; Chen, J.-L.; Li, J.; Noodleman, L.; Tsai,
- H.-L.; Hendrickson, D. N. Inorg. Chem. 1997, 36, 1198.

JA073179N